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Quantum-classical correspondence in perturbed chaotic systems

Giuliano Benenti1 and Giulio Casati1,2

1International Center for the Study of Dynamical Systems, Universita` degli Studi dell’Insubria
and Istituto Nazionale per la Fisica della Materia, Unita` di Como, Via Valleggio 11, 22100 Como, Italy

2Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
~Received 17 December 2001; revised manuscript received 20 March 2002; published 18 June 2002!

We discuss the behavior of fidelity for a classically chaotic quantum system. We show the existence of a
critical value of the perturbation above which the quantum decay, exponential or power law, follows the
classical one. The independence of the decay rate of the perturbation strength, discussed in the literature, is a
consequence of the quantum-classical correspondence of the relaxation process.
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Quantum chaos, namely, the attempt to understand cla
cal dynamical chaos in terms of quantum mechanics, has
to a much better understanding of some properties of qu
tum motion which go beyond simple integrable models a
perturbative treatments. A simple property of quantum c
servative Hamiltonian systems with a finite number of p
ticles, namely, the discrete spectrum, has been at the o
of some difficulties. Indeed, in the classical ergodic theor
discrete spectrum together with linear local instability of m
tion is a typical feature of integrable systems, while chao
systems are characterized by a continuous spectrum an
ponential local instability. This fact has cast doubt on t
possibility of dynamical chaos in quantum mechanics.
the other hand, the correspondence principle requires tra
tion to classical mechanics of all properties, including d
namical chaos. As discussed on several occasions@1# this
apparent contradiction is resolved by taking into account
a sharp distinction between the discrete and continuous s
trum becomes meaningful only in the limitt→`. For finite
times, there exist different time scales below which the qu
tum motion can display chaotic properties like the cor
sponding classical one. These time scales tend to infinit
the effective Planck constant\eff→0. Two time scales are o
particular importance: the random or Ehrenfest time scalt r
and the relaxation or Heisenberg time scaletR . For t,t r the
quantum motion is exponentially unstable like the class
one, while the quantum relaxation process takes place du
the time t,tR . Since typicallyt r!tR , the quantum relax-
ation process takes place in the absence of exponential i
bility. A clear illustration of this peculiar feature of quantu
motion is shown in@2#. It should be remarked that this lac
of exponential instability does not prevent exponential de
of dynamical quantities like correlation functions or surviv
probability @3#.

Recently the problem of the stability of quantum moti
has attracted much interest, also in relation to the field
quantum computation. A quantity of central importan
which has been the focus of many studies@4–12# is the
so-called fidelityf (t), which measures the accuracy to whi
a quantum state can be recovered by inverting, at timet, the
dynamics with a perturbed Hamiltonian:

f ~ t !5 z^cueiĤ te2 iĤ 0tuc& z2. ~1!
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Herec is the initial state which evolves for a timet with the
Hamiltonian Ĥ0 while Ĥ5Ĥ01V̂ is the perturbed Hamil-
tonian. The analysis of this quantity has shown that, un
some restrictions, the decay off (t) is exponential with a rate
given by the classical Lyapunov exponent@5#. This result
appears to be consistent with recent experiments on the
larization echoes in nuclear magnetic resonance@13# and
with numerical computations@6#. More recent papers hav
contributed to clarifying different complementary aspects
the problem@7,9–11#, including the relation to the local den
sity of states@12# and the use of the semiclassical approa
@8#. The analysis of this quantity has some delicate asp
concerning attempts to characterize quantum chaos via
classical Lyapunov exponent and the role of the above m
tioned time scales. It is therefore highly desirable to ha
very accurate numerical results, and to this end it is nec
sary to consider simple systems which display the gen
features of classical and quantum chaotic systems and w
can be easily treated numerically.

In this paper we consider the behavior of fidelity for
classically chaotic system, in the delocalized regime of qu
tum ergodicity, in which the wave functions have a compl
pattern that can be described within the framework of r
dom matrix theory. We show that the type of decay and
rate depend on the strength of the perturbation. In particu
above a critical border, the quantum decay mimics, up to
relaxation time scale, the classical one, which, in turn, can
exponential or power law. The independence of the de
rate of the perturbation, discussed in several papers, sim
reflects the properties of the underlying classical motion.

We consider the classical sawtooth map

n̄5n1k0~u2p!, ū5u1Tn̄, ~2!

where (n,u) are conjugated action-angle variables (0<u
,2p), and the overbars denote the variables after one m
iteration. Introducing the rescaled momentum variablep
5Tn, one can see that the classical dynamics depends
on the single parameterK05k0T. We consider the map~2!
on the torus2pL<p,pL, whereL is an integer. ForK0
.0 the motion is completely chaotic and diffusive, wi
Lyapunov exponent given byl5 ln$(21K01@(21K0)

2
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24)1/2#/2%. For K0.1 the diffusion coefficient is well ap
proximated by the random phase approximation,D
'(p2/3)K0

2.
The quantum evolution in one map iteration is describ

by a unitary operatorÛ0 acting on the wave functionc:

c̄5Û0c5e2 iTn̂2/2eik0( û2p)2/2c, ~3!

wheren̂52 i ]/]u ~we set\51). We take2N/2<n,N/2,
k05(K0/2pL)N, T52 pL/N. The classical limit corre-
sponds toN→`. We note that in this simple quantum mod
one can observe important physical phenomena like dyna
cal localization and cantori localization@14#. Our aim is to
study the fidelity decay in the delocalized regime of quant
ergodicity. Moreover, we start by considering parameter v
ues for which there is no initial transient diffusive behavi
which may considerably affect the decay of fidelity.

In order to compute the fidelity we choose to perturb o
system by slightly varying the kicking strengthK5K01e,
with e!K0. Correspondingly, the perturbed quantum kicki
parameter isk5k01s, with s5eN/(2pL). Since we want
to compare classical and quantum evolution, we compute
classical ‘‘fidelity’’ f c(t) in the following way: we consider
in the phase space a uniform density of points inside a s
of areaA52 pn (0<u,2p,2n/2<p,n/2). We then de-
fine f c(t) as the overlap of the initial areaA with the areaA8
obtained by evolvingA for t iterations of the map~2! and
then reversing the evolution fort iterations with the per-
turbed strengthK5K01e. In practice, we follow the evolu-
tion of 106 trajectories uniformly and randomly distribute
inside the areaA and define the fidelityf c(t) as the percent-
age of orbits that return back to the areaA at timet, after the
above reversing procedure. The corresponding quantum
tial condition is given by a uniform mixture of momentu
states located inside the areaA. We note that this choice, in
addition to giving the correct classical limit whenN→`,
introduces a convenient averaging procedure. Moreover
have checked that the same fidelity decay rates are obta
if one starts from pure states, like momentum eigenstate
coherent states.

The behavior of the classical fidelity is shown in Fig.
for K051, L51, and different values of the perturbatio
strengthe. In this particular regime, characterized by~i! uni-
form local exponential instability and~ii ! absence of diffu-
sive regime, the fidelity decay is ruled by the Lyapunov e
ponent l. The exponential decay starts after an init
transient timet' ln(n/e)/l, which is required to amplify the
perturbation up to the scalen @15#.

The decay of the quantum fidelity is Gaussian below
perturbative border@7,8#. This border is given by the value o
the perturbation at which the typical transition matrix e
mentU between quasienergy eigenstates becomes larger
the average level spacing 1/r. For ergodic eigenfunctions
U;s/AN, while the density of quasienergy states is giv
by r5N/2p. Therefore the perturbative border is given
sp'1/AN. Above this border one typically expects an exp
nential decay of fidelity, with a rateG52prU2's2 given
by the width of the Breit-Wigner local density of states@7#.
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This theoretical prediction is confirmed in Fig. 2, whic
shows the decay of quantum fidelity ate5531025 and dif-
ferent N values, withs.sp . The nice scaling behavior o
Fig. 2 confirms the predicted exponential decayf (t)'exp
(2Cs2t), with the numerically determined constantC'2.2.

On the other hand, as stated in the Introduction, one
pects that in the semiclassical regime the quantum mo
mimics the classical one up to the relaxation time sc
which is determined by the density of quasienergy eig
states that significantly contribute to the wave function d
namics. To this end it is necessary that the perturbations is
strong enough to allow the quantum motion to follow, on t

FIG. 1. Decay of classical fidelity for the classical sawtooth m
with K051, L51, n52p/104, and perturbation strengthe51023

~circles!, 1024 ~squares!, 1025 ~diamonds!, 1026 ~triangles!, and
1027 ~stars!. The straight lines show the decayf c(t)}exp(2lt),
with Lyapunov exponentl50.96. The dashed line indicates th
saturation valuef c,`5n/(2pL)51024. Here and in the following
figures the logarithms are decimal.

FIG. 2. Decay of the fidelity for the quantum sawtooth map
K051, L51, e5531025, N58192 ~dotted line, s50.065),
16 384 ~dashed line,s50.13), and 32 768~solid line, s50.26).
The straight line gives the decayf (t)5exp(2Gt), with rate G
52.2s2. As initial state we take a momentum eigenfunction w
n50. The inset shows a magnification for small times. Circles g
the classical decay forn51024.
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average, the initial classical decay. In our case this may h
pen ifs is large enough to induce transitions at least betw
nearest neighbor momentum states, namely,s.sc'1. If
s,sc , the quantum excitation is unable to follow the cla
sical spreading of the initial state. One may also argue
different way: since with our choice of parameters we are
the metallic regime, allN quasienergy states are involved
the evolution of the unperturbed system. Then the effec
the perturbation on the quantum motion can imitate the c
responding classical one only if there are no quantum lo
ization effects on the quasienergy states. This happens w
the width of the local density of states becomes compara
to the bandwidth, that is,rG'N, which again gives the
threshold valuesc'1. We remark that, as discussed in@16#,
in the theory of Wigner band random matrices the Bre
Wigner regime corresponds to a sort of partial perturba
localization. The above theoretical estimate is well confirm
by our numerical data presented in Figs. 3 and 4. Figur
shows that fors.1 the quantum fidelity closely follows th
classical behavior, namely, it decays exponentially with
classical rate given by the Lyapunov exponent. Figure
shows the decay rateg as a function of the perturbatio
strengths. It is clearly seen that fors,1 the decay rate is
proportional tos2, that is, to the width of the Breit-Wigner
Thereforesc'1 is a critical value which separates two di
tinct regimes: a pure quantum perturbation dependent
gime, and a semiclassical regime. We note that the pertu
tion s depends on the productNe. For s.1 the decay rate
does not change by increasingN at fixed e, since by doing
this we go toward the classical limit. On the other hand
we increasee at fixed N ~provided that the perturbation re
mains classically small, i.e.,e!K0) the decay rate also doe
not change, since the exponential amplification of the per
bation is controlled by the parameterK'K0. In both cases
thedecay rateof fidelity is perturbation independent. This
a property of the classical motion which, in the semiclass
regime, is shared by quantum mechanics. However,
would like to stress that the overall decay remainsperturba-

FIG. 3. Classical and quantum fidelity decay forK051, L
51, n52p/103. Left curves:e51023, N516 384 ~dashed line,
s52.61), N5131 072 ~solid line, s520.9), and classical deca
~circles!. Right curve:e51024, N5131 072~solid line, s52.09)
and classical decay~triangles!.
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tion dependent, since the exponential decay starts after
time }u lneu ~see Figs. 1 and 3!.

For the parameter values of Figs. 1–4, the decay of fid
ity is exponentially fast and the saturation valuef `

5n/(2pL) is reached on times of the order of the Ehrenf
time t r' lnN/l, which is much shorter than the Heisenbe
time. In order to observe the effect of the Heisenberg ti
scale it is necessary to have a much slower decay of fide
In Fig. 5 we takeK051 andL550, so that we allow for a
Gaussian diffusive process in momentum space. Becaus
this, during the diffusion time the fidelity decays in the cla
sical case as 1/ADt @17#. Figure 5 shows that fors.sc
'1 the quantum decay follows the classical one for lar
and larger times asN increases, in agreement with the corr

FIG. 4. Rateg of the exponential decay for the quantum fideli
versus perturbation strengths, for K051, N52048~circles!, 8192
~diamonds!, and 65 536~squares!, K052, N58192 ~stars!, K0

510, N58192 ~triangles!. The dashed line gives the decay rateG
52.2s2. The solid lines show the Lyapunov decay, with ratesl
50.96 ~at K051), 1.32 (K052), and 2.48 (K0510).

FIG. 5. Fidelity decay in the diffusive regime withL550, K0

51, n5p, e50.05. The dashed curve gives the classical decay,
solid curves the quantum decay: from top to bottomN51024 (s
50.16), 2048 (s50.33), 8192 (s51.30), 16 384 (s52.61), and
32768 (s55.22). The straight line indicates the decayf (t)
}1/ADt.
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spondence principle. The asymptotic value isf `

5n l /(2pL), where, according to the scaling theory of loca
ization, l 5j/N5g(x), with x5k2/N @18#. Herej is the ac-
tual localization length of the ‘‘sample’’ of sizeN, while k2

gives the localization length for the infinite sample, up to
numerical constant of order 1. The scaling functiong(x) is
proportional tox for x!1 and saturates to 1 forx@1. The
transition valuex51 corresponds toN'105. Moreover, the
saturation value is approached after a relaxation timet l'j.
We stress that in the case of Fig. 5 the decay of fidelity
controlled by the diffusion coefficient and not by th
Lyapunov exponent. The observation of this regime rep
sents a challenge for experiments like spin echoes. Fur
theoretical investigations are also desirable in order to un
stand more clearly the effect of classical diffusion and qu
tum localization on the behavior of fidelity.

In summary, we have shown that the decaying behavio
fidelity in a classically chaotic system strongly depends
system parameters as well as on the perturbation stren
ky
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Nevertheless, there is a regime in which the decayrate ~ex-
ponential or power law! is perturbation independent: in thi
regime the quantum motion simply mimics the properties
the underlying classical dynamics. Therefore the decay
fidelity cannot be taken as a characterization of quant
chaos, as was sometimes proposed@4,6#. We emphasize tha
the quantum to classical correspondence of the average
havior is valid until the Heisenberg time scale, which
much longer than the Ehrenfest time scale associated
the exponential instability of quantum motion.
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